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Abstract  

We present a summarizer that uses 
alternative modules to perform its key tasks. 
Such a configurable summarizer benefits 
from machine learning techniques that help 
discover which configuration performs best 
for documents in general or for those 
characterized by particular lexical features. 
We determine the quality of an 
automatically generated summary by 
computing a measure of its coverage of the 
content phrases in a model summary known 
to be of good quality. Machine learning 
demonstrates significant improvement in 
this measure over the average value of 
summaries produced from all configuration 
parameter settings. 

We perform text summarization by extracting the 
most representative sentences from a single 
document. Such summaries tend to be informative, 
rather than indicative; and generic, rather than 
biased towards the interests or purposes of any 
reader. This is how we situate our work in the 
gradually emerging classification of summary 
types which was recently recapitulated in Kan, 
Klavans and McKeown (2002). 

1 System Design 

Our work on summarization began several years 
ago in the context of a larger project with multiple 
objectives, in which summary generation would be 
one of the tools. We therefore came to this task for 

practical reasons and with few hypotheses in play. 
From the outset it was clear that the approach we 
envisioned could be implemented in large part by 
combining existing NLP research software which 
were either in the public domain or freely 
available from their authors. It suited our purposes 
not to reinvent any more wheels than really 
necessary. It also seemed a good idea to use 
software which is known to the NLP research 
community and has already been subject to its 
scrutiny. We therefore conceived of our 
summarization system as a testbed in which we 
could evaluate how well alternative black boxes 
developed by others cooperate as they perform one 
of the key tasks involved in our method of 
summarization. The rationale inherent in this 
architecture has itself in due course provided a 
research agenda. 

We assumed that a summary composed of 
neighboring, thematically-related sentences should 
read better, and perhaps also convey more 
information, than one in which each sentence is 
independently chosen from the document as a 
whole and thus likely bears no relation to its 
neighbours. This assumption led to a process in 
which the text to be summarized is first broken 
into segments, which are sequences of adjacent 
sentences talking about the same topic. In a 
separate operation keyphrases are extracted from 
the whole text and ranked. Each sentence in the 
text is then rated according to the number of 
highly-ranked keyphrases which it contains, and 
each segment is ranked according to the ratings of 



the sentences which it contains. The summary is 
then constructed by picking sentences from those 
that exceed a threshold count of keyphrases in the 
most highly ranked segments, moving from the 
best segment to the next best until the required 
number of sentences have been accumulated. 
These sentences are put in document order and 
presented to the user as a summary of the 
document. 

2 Processing 

Because our summarizer was at first designed to 
be a functional component of a larger project, it 
was necessary to handle real world texts which, 
although coded in plain ASCII, may have a variety 

of extraneous formatting: pagination, embedded 
figures and tables and, most crucially, columnar 
format. Although it took some effort to install the 
black boxes in wrappers that brought them to a 
common interface, most of our attention was spent 
on translating input text to the "NLP normal" form 
— one sentence per line, one extra line between 
paragraphs — required by most of the black 
boxes. This form is also made necessary by the 
task itself; sentence extraction presumes a text in 
which sentences are identified correctly. 
Recognizing sentence and paragraph boundaries 
and extraneous material such as tables interpolated 
into the flow of text are legitimate research issues 
in themselves. They are, however, not inherently 
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part of summarization, so we will not discuss them 
further here. 

In the course of processing of input text prior to 
summarization we create a data model of the 
document which records its various lexical 
features on a per-sentence basis as well as details 
of sentence and paragraph order. This record is the 
basis for the document characterization which 
plays a role in summary evaluation discussed in 
Section 4. 

The key tasks for which we used alternative 
external programs are document segmentation, 
keyphrase extraction, and phrase matching. The 
Columbia University Segmenter (Kan, Klavans 
and McKeown 1998), Hearst's TextTiling program 
(1997) and the C99 program (Choi 2000) were 
used to divide a document into segments. A fourth 
option implemented recently turns off 
segmentation and treats the document as a single 
segment. A moment’s thought may show that this 
is the control case for our hypothesis about the 
benefit of locality in sentence selection; picking 
the highest-rated sentences from the entire text 
defeats locality. To extract keyphrases we used 
Waikato University's Kea (Witten, Paynter, Frank, 
Gutwin and Nevill-Manning 1999), the Extractor 
program from the Canadian NRC's Institute for 
Information Technology (Turney 2000), and 
NPSeek, a program developed at the University of 
Ottawa (Barker and Cornacchia 2000). The Kea 
program suite also provided modules to match 
phrases exactly and in stemmed form. Figure 1 
shows the architecture of the summarization 
program constructed around these black boxes 
(stemmed matching is dimmed deliberately).  

3 Operational Parameters 

To run, our program must be told which black box 
to use for each of the three key tasks where we 
have choice. Three other aspects of the process or 
the task have been judged important enough to 
require parametrization: 1) the size of the 
summary in sentences, words, or as a proportion of 
the document; 2) the number of keyphrases to use 
in rating sentences and segments; 3) the threshold 

number of keyphrase matches needed for a 
sentence to qualify as a candidate for a summary. 
There are 24 unique specifications for black boxes 
alone; each of the three additional parameters 
takes a count rather than an enumerated value, so 
it is quite feasible to produce hundreds if not 
thousands of summaries for a single document. 

This is computationally expensive. Results 
from DUC 2001 led us to shrink this space by 
dispensing with stemmed matching (which for this 
reason is shown dimmed in Figure 1), fixing the 
keyphrase threshold at two and limiting the range 
of the other two count parameters, summary size 
and number of keyphrases. 

4 Evaluation 

How good are any of these summaries? Answering 
that question has proven to be quite difficult 
(Goldstein, Kantrowitz, Mittal and Carbonell 
1999), and it is currently the object of quite intense 
research interest, of which the two Document 
Understanding Conferences (DUC) sponsored by 
NIST are notable examples. Summary evaluation 
has become a research goal in itself. 

A variety of statistical measures of summary 
content — kappa, relative utility, and the 
traditional IR metrics of precision and recall — are 
computed in systems like the MEAD Eval toolkit 
(Radev, Teufel, Lam and Saggion 2002) or SEE 
(Lin 2001) that automate or assist the assessment 
of summaries against the original texts on which 
they are based. We have, however, chosen to 
compare our summaries against the gold standard 
of ones written by human authors. Such 
summaries are not easily come by. We had 
therefore initially settled on academic papers1 as a 
subject genre and have adopted the authors’  
abstracts which begin such papers as a practical 
approximation to the gold standard summary we 
seek, an approach proposed by Mittal, Kantrowitz, 
Goldstein and Carbonell (1999). Who better than 
the author knows the intended content of a paper? 

                                                      
1 Initially we used a one-million-word corpus of 75 
academic papers published between 1993-1996 in the 
online Journal of Artificial Intelligence Research. 



We use a variant of the keyphrase extraction 
technique used in the summarization program to 
evaluate a summary against the reference 
summary. That gold standard is broken down into 
a set of unique content keyphrases by processing it 
against a stoplist of 980 closed-class and common 
words. The resulting keyphrases in abstract 
(KPiAs) differ from those used to produce the 
summary under evaluation in that they compose a 
comprehensive description of the abstract rather 
than being limited to a small number of the most 
highly ranked ones. 

A summary is ranked according to the degree 
to which it covers the set of KPiAs. Its score is 
computed using the following formula: 

� 1.0 *  KPiAunique + 0.5 *  KPiAduplicate 

The formula computes a total for the sentence, 
assigning a weight of 1.0 to each KPiA which is 

added to the coverage set and 0.5 to each that 
repeats a KPiA which is already in the set.  

5 Learning 

The combination of a wholly automated evaluation 
technique and a large number of instances to 
which to apply this technique is a textbook 
application for machine learning. Accordingly, we 
embedded the summarization program in a 
framework which automates its operation and the 
evaluation of its results and then applies the C5.0 
decision tree and rule classifier (Quinlan 2002) to 
infer rules about which parameter settings produce 
highly-rated or poorly-rated summaries. This 
architecture appears in Figure 2. To permit 
comparisons between documents, each summary 
KPiA rating is normalized by dividing it by the 
total count of unique KPiAs found in the same 
number of sentences ranked highest in the 

Figure 2.  Text Summar ization Learner  Architecture 
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document on KPiA count. This establishes the 
highest possible rating for a summary of a given 
size. The set of ratings for summaries of all 
documents is then discretized into the five values2 
verybad, bad, medium, good, verygood using 
MacQueen’s (1967) k-means clustering technique. 
C5.0 then induces rules based on these ratings and 
parameter values. Much of the learner’s operation 
has been automated, most recently the 
identification of best parameters in the C5.0 output 
and the application of k-means clustering, and the 
job of completely automating operation of the 
system is under way. 

Although our first experiments involved a data 
vector containing only the settings of the six 
parameters that regulate the production of 
summaries, availability of the document data 
model soon led us to add the features listed in 
Table 1 in order to characterize the document 
being summarized. These features are all counts: 
the number of characters, words, sentences and 
paragraphs in the document; and the number of 
other syntactic elements, such as KPiAs, 
connectives and proper nouns. We also count 
content phrases (substrings between stoplist 
entries), bigrams (word pairs) and content 
bigrams. We record how many of these latter three 
primitive lexical items occur once, twice, three 
times, or more than three times in the document.  

                                                      
2 C5.0 requires a discrete outcome variable. The use of 
five values was determined heuristically. 

Adding features has the effect of asking C5.0 to 
discover rules identifying which parameter values 
produce good summaries for documents with 
certain features, rather than for documents in 
general. Further active investigation over the last 
year has not yet identified additional features 
which might be used effectively to characterize 
documents. 

Our experiments clearly show the benefit of 
machine learning. Choosing parameter values 
randomly produces an average rating of 2.79, the 
medium value that is to be expected from a 
population of values that have been normalized. 
When the best parameter settings for each text are 
chosen, however, the average rating increases two 
full grades to 4.78 or verygood. 

6 Document Understanding Conference 

We participated in the Document Understanding 
Conferences in 2001 (Copeck, Japkowicz and 
Szpakowicz 2002) and 2002. In DUC, NIST first 
provides participants with a corpus of training 
documents together with abstracts written by 
skilled editors, and then a set of similar test 
documents which each participant is to summarize 
in a manner consistent with that inferred from the 
training set. Our participation involved slight 
modification to our learning system. Rather than 
constructing rules that relate features and 
parameters to KPiA ratings, C5.0 used the training 
data to build a classification tree recording these 

FEATURE DESCRIPTION FEATURE DESCRIPTION 

chars number of characters in the document cphr3 number of 3-instance content phrases 

words number of words in the document cphr4 number of 4-or-more instance content phrases 

sents number of sentences in the document cbig number of 1-instance content bigrams 

paras number of paragraphs in the document cbig2 number of 2-instance content bigrams 

kpiacnt number of kpia instances cbig3 number of 3-instance content bigrams 

conncnt number of (Marcu) connectives cbig4 number of 4-or-more instance content bigrams 

pncnt number of PNs, acronyms abig number of 1-instance bigrams 

contcnt number of content phrases abig2 number of 2-instance bigrams 

cphr number of 1-instance content phrases abig3 number of 3-instance bigrams 

cphr2 number of 2-instance content phrases abig4 number of 4-or-more instance bigrams 

Table 1.   Document Features 



same relationships. The test data, which is 
composed of document features only, was then 
classified against this structure and the parameters 
that gave the best summary for the training 
document most similar to each test document were 
used to produce the summaries submitted to the 
conference. Figure 3 depicts the process.  

Ten-fold cross validation on the training data 
shows 16.3% classification error (std. dev. .01). 
The 5x5 confusion matrix further indicates that 
80% of misclassifications were to the adjacent 
value in the scale. This suggests that the rules are 
reasonably trustworthy. The test run showed that 
they are productive, and that the ratings they seek 
to maximize are well-founded.  

For DUC 2002 we added adaptive boosting 
(Freund and Schapire 1996) to the learning 
process. Adaptive boosting, or ADABOOST, 
improves the classification process by iteratively 
generating a number of classifiers from the data, 
each optimized to classify correctly the cases most 
obviously misclassified on the previous pass. The 
votes of a population of these classifiers generally 
provide better outcomes than do the decisions of 
any single classifier. 

NIST provides participants with a full suite of 
submissions and analysis material after each event 
as an invitation to get involved in judging results. 
We used the human summaries of the 2001 test 
documents to augment training data for 2002 from 
308 to 590 documents. Our own evaluation of our 
results for 2001 varied from that computed by Paul 

Over (2001) for no obvious reason, so we held 
back from reporting results for DUC 2002 at the 
July workshop on automatic summarization 
occurring in conjunction with ACL-02. In 2001 we 
did well on single document extractive summaries 
and worse than average on multi-document 
summaries. Because our technique is not 
particularly suited to summarize more than one 
document at a time, and because we are not 
entirely comfortable with the notion of 
incorporating material from more than one 
document in a single summary, we chose to 
participate only in the single document track in 
2002. 

In DUC 2002 our submission ranked somewhat 
below the middle of the pack of 13 contributors in 
the single document track. This is lower than our 
performance the previous year, though ranking 
alone is not a clear indication of relative decrease 
in performance. 

A measure used both in the training phase and 
the test phase offers insights into the state of the 
overall process. We compute the discretized KPiA 
rating for all summaries of documents in the 
training set. We also infer from the classification 
tree a KPiA rating for each summary of every 
document in the test set. Distribution of the five 
rating values across any set of summaries 
establishes the limits of the range of possible 
outcomes. A comparison of KPiA distributions for 
DUC 2001 with their counterparts for DUC 2002 
appears in Table 2. Rows show the percentage of 
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summaries rated, or inferred to be, in the indicated 
class. Each column concludes with the average 
rating for all its summaries. In 2001 test and 
training data were similar, and machine learning, 
indicated by the gray arrow, was able to find 
settings for each test document that produced at 
least a good summary.  

Contrast this with the situation in 2002. The 
training data ratings are akin to those for the 2001 
data, but ratings of the test data are widely at 
variance with those of the three other document 
collections. Fully 80% of the summaries of the test 
data collection are inferred to be verybad. Despite 
machine learning outperforming its counterpart in 
2001, there were simply no well-rated summaries 
that could be produced for approximately 22% of 
the 2002 test documents. This situation almost 
guaranteed the low evaluation produced by the 
NIST judges. 

The most obvious explanation for these 
circumstances would be an inconsistency between 
the 2002 training and test data. Our system would 
exhibit this in the values it computes for the 19 
features used to model each document for machine 
learning. However, despite the presence of outliers 
in each set of documents—texts much longer or 
shorter than the average—inspection shows that 
the distribution of each feature in one collection 
resembles its counterpart in the other to a far 
greater degree than do the two problematic KPiA 
rating distributions. In addition, where individual 
features of a document are related to one another, 

distributions in the two collections also differ in 
consistent ways. In sum, the test and training 
collections appear to resemble one another to the 
degree one would expect. 

We have therefore ruled out the most obvious 
explanation for our results. Although we have not 
yet been able to find a reason why our 2002 
training summaries had such low ratings, we 
continue to investigate. 

7 Conclusions and Future Work 

We intend in future: 

• to complete automating the operation of the 
entire text summarization learning system; 

• to continue to look for lexical features which 
describe documents effectively. In this regard 
commercial keyphrasers identify entities as 
place, city, state and country; company, 
organization and group; day and year; percent 
and measure; person; and property. Some of 
these may merit recording; 

• to investigate the SEE and MEADEval 
summarization evaluators;  

• to merge the output sets of two or all three 
keyphrasers, providing new alternatives. To 
what degree do the keyphrasers agree in their 
selections? How would merging sets of 
keyphrases be accomplished? What effect 
would use of a merged set have on summary 
output?  

  2  0  0  1 
 2  0  0  2 

RATING   TRAIN TEST  SUB    TRAIN TEST  SUB  

verygood   11% 14%  79%    13% 15%  77%  

good   12% 21%  21%    18% 1%  2%  

medium   20% 19%      24%   3%  

bad   18% 21%      26% 4%  12%  

verybad   39% 25%      19% 80%  7%  

AVERAGE   2.35 2.79  4.79    2.80 1.68  4.31  

Table 2.   KPiA Summary Rating Distr ibutions in DUC Corpora 
 

+ 2.00 + 2.68 



• to consider new techniques for sentence 
selection, which may involve factors other 
than keyphrase matching. For instance words 
marking anaphora may make a sentence less 
well suited to a summary; 

• to continue looking to add new segmenters 
and keyphrasers to our system. 

• to investigate further the role of segmentation 
and locality in text summarization. 
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